If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+24x=56
We move all terms to the left:
6x^2+24x-(56)=0
a = 6; b = 24; c = -56;
Δ = b2-4ac
Δ = 242-4·6·(-56)
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{30}}{2*6}=\frac{-24-8\sqrt{30}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{30}}{2*6}=\frac{-24+8\sqrt{30}}{12} $
| 0.2x-2.5=3.6 | | 3/5m=1/3 | | ((X+3)/4)=((x-2)/3)+1/4 | | x+40°+60°=180° | | (10/x-1.5)-10/x=1.5 | | 0.2=0.5/p | | 4p-3(p-2)=14 | | -2t-7=11 | | J(a)=2a+9 | | 7t-8=43 | | 2(m+2)-5m=22 | | 55=-15x-4.9x^2 | | 55=15x+4.9x^2 | | 15x-x+625=3 | | 5x^2-77x-30=0 | | 7x^2+63x,x=27 | | N=10/x | | 7x^2+63xx=27 | | 3x-5=75-15 | | 10x^2-20x+68=0 | | ∣7p+4∣=24 | | 2+(5x•4)=7 | | 2.5x+2=3x-2 | | 2(2+t4)=3/4(24-8t) | | 2(2+t4)=3/4(24-8t | | 9x+1-7x-20=-5 | | 4.5x+8=7x-2 | | 8x-9=0.5x-85 | | Y=-2.5x-2.3 | | 2^x=3^3 | | 2^x=74088 | | Y=-2.3x-2.3 |